If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2-14y-22=0
a = 14; b = -14; c = -22;
Δ = b2-4ac
Δ = -142-4·14·(-22)
Δ = 1428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1428}=\sqrt{4*357}=\sqrt{4}*\sqrt{357}=2\sqrt{357}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{357}}{2*14}=\frac{14-2\sqrt{357}}{28} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{357}}{2*14}=\frac{14+2\sqrt{357}}{28} $
| -3y+1=21 | | 19w+19+14w=20w-20 | | (9/x)+(3/x+4)=4 | | 5k+7-2k=16 | | w+2/3=2/5/6 | | x+1=-4+4 | | 19w+19+14w=20W+20 | | x-20=-16-14 | | |-3y+1|=21 | | F(-4x)=1/2x-3 | | -1/4x-3/4x=1/4x-3 | | 2(2-3r)=-5(r-3)= | | 3(42.3)-15+2(42.3)(y)(y)=180 | | p-8=5p-4p | | x+8.5=0.5 | | s+212s+20=41 | | -20+4=x+7 | | -1/3x-2/3=-2/3x+5 | | w=2/3=25/6 | | 4x-8(x+1)=48 | | -3(-2x+5)=6x+4 | | -6x+x=x-6 | | -3x2(3x-7)=-4-7x | | 1/4(4x+8)=2/3 | | -8x-25=31-10x | | (18)-5=a | | -4a=4a=0 | | -1/3x-2/3+-2/3x=5 | | 8x46=8x(40+) | | 11+5x=46 | | 4x=-x=10 | | 4a-5+3a-6=12 |